Q. Let $u_{n}=1+2+3+\ldots +n$ and $v_{n}=\frac{u_{2}}{u_{2}-1} \cdot \frac{u_{3}}{u_{3}-1} \cdot \frac{u_{4}}{u_{4}-1} \,\,\,\,\cdots \frac{u_{n}}{u_{n}-1}$ where $n \geq 2$. Then find $\displaystyle\lim _{n \rightarrow \infty} v_{n}$.
Limits and Derivatives
Solution: