As tan(2π−θ)>0,−1<sinθ<−23,θ∈[0,2π] ⇒23π<θ<35π
Now 2cosθ(1−sinϕ)=sin2θ(tanθ/2+cotθ/2)cosϕ−1 ⇒2cosθ(1−sinϕ)=2sinθcosϕ−1 ⇒2cosθ+1=2sin(θ+ϕ)
As θ∈(23π,35π) ⇒2cosθ+1∈(1,2) ⇒1<2sin(θ+ϕ)<2 ⇒21<sin(θ+ϕ)<1
As θ+ϕ∈[0,4π] ⇒θ+ϕ∈(6π,65π) or θ+ϕ∈(613π,617π) ⇒6π−θ<ϕ<65π−θ or 613π−θ<ϕ<617π−θ ⇒ϕ∈(−23π,3−2π)∪(32π,67π)(∵θ∈(23π,35π))