Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let θ ∈(0, (π/2)). If the system of linear equations (1+ cos 2 θ) x+ sin 2 θ y+4 sin 3 θ z=0 cos 2 θ x+(1+ sin 2 θ) y+4 sin 3 θ z=0 cos 2 θ x+ sin 2 θ y+(1+4 sin 3 θ) z=0 has a non-trivial solution, then the value of θ is :
Q. Let
θ
∈
(
0
,
2
π
)
. If the system of linear equations
(
1
+
cos
2
θ
)
x
+
sin
2
θ
y
+
4
sin
3
θ
z
=
0
cos
2
θ
x
+
(
1
+
sin
2
θ
)
y
+
4
sin
3
θ
z
=
0
cos
2
θ
x
+
sin
2
θ
y
+
(
1
+
4
sin
3
θ
)
z
=
0
has a non-trivial solution, then the value of
θ
is :
4106
194
JEE Main
JEE Main 2021
Determinants
Report Error
A
9
4
π
0%
B
18
7
π
86%
C
18
π
14%
D
18
5
π
0%
Solution:
Case-I
∣
∣
1
+
cos
2
θ
cos
2
θ
cos
2
θ
sin
2
θ
1
+
sin
2
θ
sin
2
θ
4
sin
3
θ
4
sin
3
θ
1
+
4
sin
3
θ
∣
∣
=
0
C
1
→
C
1
+
C
2
∣
∣
2
2
1
sin
2
θ
1
+
sin
2
θ
sin
2
θ
4
sin
3
θ
4
sin
3
θ
1
+
4
sin
3
θ
∣
∣
=
0
R
1
→
R
1
−
R
2
,
R
2
→
R
2
−
R
3
∣
∣
0
1
1
−
1
1
sin
2
θ
0
−
1
1
+
4
sin
3
θ
∣
∣
=
0
or
4
sin
3
θ
=
−
2
sin
3
θ
=
−
2
1
θ
=
18
7
π