Given, x3+4x2cosθ+xcotθ=0 ⇒x(x2+4xcosθ+cotθ)=0 ⇒x=0 is root of equation. ⇒x2+4xcosθ+cotθ=0 has multiple roots
So, Δ=0 ⇒(4cosθ)2−4(1)(cotθ)=0 ⇒16cos2θ=4cotθ ⇒4cos2θ=cotθ ⇒4cos2θ=sinθcosθ ⇒cosθ=0 as 4cosθ=sinθ1 ⇒2sinθcosθ=21 ⇒sin2θ=21 ⇒2θ=6π or 65π ⇒θ=12π or 125π