Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let θ be an acute angle such that the equation x3 + 4x2 cos θ +x cot θ = 0 has multiple roots. Then the value of θ (in radians) is
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Let $\theta$ be an acute angle such that the equation $x^3 + 4x^2 \cos \theta +x \cot \theta = 0 $ has multiple roots. Then the value of $\theta$ (in radians) is
AP EAMCET
AP EAMCET 2019
A
$\frac{\pi}{3}$
100%
B
$\frac{\pi}{8}$
0%
C
$\frac{\pi}{12}$ or $\frac{ 5 \pi}{12}$
0%
D
$\frac{\pi}{6}$ or $\frac{ 5 \pi}{12}$
0%
Solution:
Given, $x^{3}+4 x^{2} \cos \theta+x \cot \theta=0$
$\Rightarrow x\left(x^{2}+4 x \cos \theta+\cot \theta\right)=0$
$\Rightarrow x=0$ is root of equation.
$\Rightarrow x^{2}+4 x \cos \theta+\cot \theta=0$ has multiple roots
So, $ \Delta=0$
$\Rightarrow (4 \cos \theta)^{2}-4(1)(\cot \theta)=0 $
$ \Rightarrow 16 \cos ^{2} \theta=4 \cot \theta $
$ \Rightarrow 4 \cos ^{2} \theta=\cot \theta$
$ \Rightarrow 4 \cos ^{2} \theta=\frac{\cos \theta}{\sin \theta} $
$ \Rightarrow \cos \theta=0 $ as $ 4 \cos \theta=\frac{1}{\sin \theta} $
$ \Rightarrow 2 \sin \theta \cos \theta=\frac{1}{2}$
$ \Rightarrow \sin 2 \theta=\frac{1}{2} $
$ \Rightarrow 2 \theta=\frac{\pi}{6} $ or $ \frac{5 \pi}{6} $
$\Rightarrow \theta=\frac{\pi}{12}$ or $ \frac{5 \pi}{12}$