Q.
Let the sum of the first three terms of an A.P. be 39 and the sum of its last four terms be 178. If the first term of this A.P. is 10, then the median of the A.P. is :
Let a−d,a,a+d be three terms in A.P. ⇒(a−d)+a+(a+d)=39 ⇒a=13⇒(a−d)= Ist term =10 (given) ⇒13−d=10⇒d=3 ⇒ Given AP is 10,13,16,….
Let there be n terms in AP ⇒ Sum of last four terms =178 (given) ⇒24(2l+(4−1)(−3))=178 ⇒2(21−9)=178 ⇒4l=196 ⇒1=49=tn ⇒10+(n−1)(3)=49 ⇒3n=42 ⇒n=14 ∴ Median of AP=22n th term +(2n+1) th term =27 th term + 8th term =2t7+t8=2t1+t14=210+49=259=29.5