Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let the sum of the first n terms of a non-constant A.P., a1, a2, a3, ......be 50n+ (n(n-7)/2) A. where A is a constant. If d is the common difference of this A.P., then the ordered pair (d, a50) is equal to
Q. Let the sum of the first
n
terms of a non-constant
A
.
P
.,
a
1
,
a
2
,
a
3
,
......
be 50n+
2
n
(
n
−
7
)
A
. where
A
is a constant. If d is the common difference of this
A
.
P
., then the ordered pair
(
d
,
a
50
)
is equal to
3648
186
JEE Main
JEE Main 2019
Sequences and Series
Report Error
A
(
A
,
50
+
46
A
)
62%
B
(
A
,
50
+
45
A
)
17%
C
(
50
,
50
+
46
A
)
17%
D
(
50
,
50
+
45
A
)
4%
Solution:
S
n
=
50
n
+
2
n
(
n
−
7
)
A
T
n
=
S
n
−
S
n
−
1
=
50
n
+
2
n
(
n
−
7
)
A
−
50
(
n
−
1
)
−
2
(
n
−
1
(
n
−
8
)
A
=
50
+
2
A
[
n
2
−
7
n
−
n
2
+
9
n
−
8
]
= 50 + A(n - 4)
d
=
T
n
−
T
n
−
1
=
50
+
A
(
n
−
4
)
−
50
−
A
(
n
−
5
)
=
A
T
50
=
50
+
46
A
(
d
.
A
50
)
=
(
A
,
50
+
46
A
)