Q.
Let the solution curve y=y(x) of the differential equation,
[x2−y2x+exy]xdxdy=x+[x2−y2x+exy]y pass through the points (1,0) and (2α,α),α>0. Then α is equal to
(x2−y2x+exy)xdxdy=x+(x2y2x+exy)y ⇒exy(xdy−ydx)+x2−y2x(xdy−ydx)=xdx
Dividing both side by x2 ⇒exy(x2xdy−ydx)+1−(xy)21(x2xdy−ydx)=xdx ⇒exy∣d(xt)+1−(xy)21d(xy)=xdy
Integrate both side. ∫exyd(xy)+∫1−(xy)21d(xy)=∫xdx ⇒exy+sin−1(xy)=lnx+c
It passes through (1,0) 1+0=0+c⇒c=1
It passes through (2α,α) e21+sin−121=ln2α+1 ⇒ln2α=e+6π−1 ⇒2α=e(e+6π−1) ⇒α=21e(6π+e−1)