Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let the solution curve y=y(x) of the differential equation (d y/d x)-(3 x5 tan -1(x3)/(1+x6)3 / 2) y=2 x exp (x3- tan -1 x3/√(1+x6)) pass through the origin. Then y(1) is equal to :
Q. Let the solution curve
y
=
y
(
x
)
of the differential equation
d
x
d
y
−
(
1
+
x
6
)
3/2
3
x
5
t
a
n
−
1
(
x
3
)
y
=
2
x
exp
{
(
1
+
x
6
)
x
3
−
t
a
n
−
1
x
3
}
pass through the origin. Then
y
(
1
)
is equal to :
6323
125
JEE Main
JEE Main 2023
Differential Equations
Report Error
A
exp
(
4
2
4
+
π
)
B
exp
(
4
2
4
−
π
)
C
exp
(
4
2
1
−
π
)
D
exp
(
4
2
π
−
4
)
Solution:
d
x
d
y
+
(
(
1
+
x
6
)
3/2
−
3
x
5
t
a
n
−
1
x
3
)
y
=
2
e
{
1
+
x
6
}
x
−
t
a
n
x
}
I.F.
=
e
∫
(
1
+
x
6
)
32
−
3
x
5
t
a
n
−
1
x
3
d
x
=
e
1
+
x
6
t
a
n
−
1
x
3
−
x
3
Solution of differential equation
y
⋅
e
1
+
x
6
t
a
n
−
1
x
3
−
x
3
=
∫
2
x
e
(
1
+
x
6
x
3
−
t
a
n
−
1
x
3
)
⋅
e
(
1
+
x
6
t
a
n
−
1
(
x
3
)
−
x
3
)
d
x
=
∫
2
x
d
x
+
c
y
⋅
e
1
+
x
6
t
a
n
−
1
x
3
−
x
3
=
x
2
+
c
Also it passes through origin
c
=
0
y
(
1
)
⋅
e
2
t
a
n
−
1
(
1
)
−
1
=
1
y
(
1
)
⋅
e
2
4
π
−
1
=
1
y
(
1
)
⋅
e
4
2
π
−
4
=
1
y
(
1
)
=
e
4
2
π
−
4
1
=
e
4
2
4
−
π