Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let the solution curve y=y(x) of the differential equation (4+x2) d y-2 x(x2+3 y+4) d x=0 pass through the origin. Then y (2) is equal to .
Q. Let the solution curve
y
=
y
(
x
)
of the differential equation
(
4
+
x
2
)
d
y
−
2
x
(
x
2
+
3
y
+
4
)
d
x
=
0
pass through the origin. Then
y
(
2
)
is equal to _________.
260
154
JEE Main
JEE Main 2022
Differential Equations
Report Error
Answer:
12
Solution:
(
4
+
x
2
)
d
y
−
2
x
(
x
2
+
3
y
+
4
)
d
x
(
x
2
+
4
)
d
x
d
y
=
2
x
3
+
6
x
y
+
8
x
(
x
2
+
4
)
d
x
d
y
−
6
x
y
=
2
x
3
+
8
x
d
x
d
y
−
x
2
+
4
6
x
y
=
x
2
+
y
2
x
3
+
8
x
L.I.
d
x
d
y
+
p
y
=
ϕ
p
=
x
2
+
4
−
6
x
ϕ
=
x
2
+
4
2
x
3
+
8
x
I.F.
=
e
−
∫
x
2
+
4
6
x
d
x
=
e
−
3
l
o
g
e
(
x
2
+
4
)
=
e
l
o
g
e
(
x
2
+
4
)
−
3
=
(
x
2
+
4
)
3
1
Sol
y
⋅
(
x
2
+
4
)
3
1
=
∫
(
x
2
+
4
)
3
(
x
2
+
4
)
2
x
3
+
8
x
d
x
(
x
2
+
4
)
3
y
=
∫
(
x
2
+
4
)
3
(
x
2
+
4
)
2
x
(
x
2
+
4
)
d
x
x
2
+
4
=
t
2
x
d
x
=
d
t
(
x
2
+
4
)
3
y
=
∫
t
3
d
t
(
x
2
+
4
)
3
y
=
2
(
x
2
+
4
)
2
−
1
+
C
passes through origin
(
0
,
0
)
0
=
2
×
16
−
1
+
C
(
x
2
+
4
)
3
y
=
2
(
x
2
+
4
)
2
−
1
+
32
1
y
=
2
−
(
x
2
+
4
)
+
32
(
x
2
+
4
)
3
y
(
2
)
=
−
2
8
+
32
8
×
8
×
8
=
12