Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let the solution curve of the differential equation x d y=(√x2+y2+y) d x, x>0, intersect the line x =1 at y =0 and the line x=2 at y=α. Then the value of α is :
Q. Let the solution curve of the differential equation
x
d
y
=
(
x
2
+
y
2
+
y
)
d
x
,
x
>
0
, intersect the line
x
=
1
at
y
=
0
and the line
x
=
2
at
y
=
α
. Then the value of
α
is :
939
129
JEE Main
JEE Main 2022
Differential Equations
Report Error
A
2
1
B
2
3
C
−
2
3
D
2
5
Solution:
x
d
y
=
(
x
2
+
y
2
+
y
)
d
x
x
d
y
−
y
d
x
=
x
2
+
y
2
d
x
x
2
x
d
y
−
y
d
x
=
1
+
x
2
y
2
⋅
x
d
x
1
+
(
x
y
)
2
d
(
y
/
x
)
=
x
d
x
ln
(
x
y
+
(
x
y
)
2
+
1
)
=
ln
x
+
R
x
y
+
y
2
+
x
2
=
c
x
y
+
y
2
+
x
2
=
c
x
2
x
=
1
,
y
=
0
⇒
0
+
1
=
C
⇒
C
=
1
Curve is
y
+
x
2
+
y
2
=
x
2
x
=
2
,
y
=
α
2
+
4
+
α
2
=
4
4
+
α
2
=
16
+
α
2
=
8
α
α
=
2
3