Since, a1,a2,a3,…,a2n form an AP. Therefore, a2−a1=a4−a3=…=a2n−a2n−1=d
Here, a12−a22+a32−a42+…+a2n−12−a2n2 =(a1−a2)(a1+a2)+(a3−a4)(a3+a4)+…+(a2n−1−a2n)⋅(a2n−1+a2n) =−d(a1+a2+…+a2n)=−d(22n(a1+a2n))
Also, we know a2n=a1+(2n−1)d ⇒d=2n−1a2n−a1 ⇒−d=2n−1a1−a2n ∴ Therefore, the sum is =2n−1n(a1−a2n)⋅(a1+a2n) =2n−1n⋅(a12−a2n2)