Q.
Let the range of the function f:{1,2,3,4,5}→{1,2,3,4,5} assumes exactly 3 distinct values.
If the number of such function is N, then find the value of 300N.
590
115
Relations and Functions - Part 2
Report Error
Answer: 5
Solution:
Since range contains exactly 3 distinct values ∴5C3[1!1!3!5!2!1+1!2!2!5!2!1]×3!=1500.
So, 300N=3001500=5.