Q.
Let the product of the sines of the angles of a triangle is 32 and the product of their cosines is 91. If tanA,tanB and tanC are the roots of the cubic, find the sum of the products of the roots taken two at a time.
145
98
Complex Numbers and Quadratic Equations
Report Error
Answer: 10
Solution:
Given sinAsinBsinC=32;cosAcosBcosC=91;tanAtanBtanC=32⋅19=6 ∴tanA+tanB+tanC=6[As, in △ABC,∑tanA=∏tanA]
Hence the cubic is x3−6x2+(∑tanAtanB)x2−6=0....(1)
Now ∑tanAtanB=cosAcosBcosCsinAsinBcosC+sinBsinCcosA+sinCsinAcosB ....(2)
Now A+B+C=π cos(A+B+C)=−1 cos(A+B)cosC−sin(A+B)sinC=−1 (cosAcosB−sinAsinB)cosC−sinC(sinAcosB+cosAsinB)=−1 1+cosAcosBcosC=sinAsinBcosC+sinBsinCcosA+sinCsinAcosB .....(3)
substituting in (2), we get ∑tanAtanB=cosAcosBcosC1+cosAcosBcosC=911+91=910⋅19=10
Hence the cubic is x3−6x2+10x−6=0
Clearly, the sum of the products of the roots taken two at a time is 10.