Q.
Let the point P(α,β) be at a unit distance from each of the two lines L1:3x−4y+12=0, and L2:8x+6y+11=0. If P lies below L1 and above L2, then 100(α+β) is equal to
By observing origin and P lies in same region. L1(0,0)>0;L1(α,β)>0⇒3α−4β+12>01=∣∣53α−4β+12∣∣ 3α−4β+12=5......(1)
Similarly for L2 L2(0,0)>0;L2(α,β)>0 1=∣∣108α+6β+11∣∣⇒8α+6β+11=10.......(2)
Solving (1) and (2) α=−2523;β=100106 100(α+β)=100(100−92+100106)=14