Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let the minimum value v0 of v=|z|2+|z-3|2+|z-6 i|2, z ∈ C is attained at z = z 0. Then |2 z02- barz03+3|2+v02 is equal to
Q. Let the minimum value
v
0
of
v
=
∣
z
∣
2
+
∣
z
−
3
∣
2
+
∣
z
−
6
i
∣
2
,
z
∈
C
is attained at
z
=
z
0
. Then
∣
∣
2
z
0
2
−
z
ˉ
0
3
+
3
∣
∣
2
+
v
0
2
is equal to
5295
2
JEE Main
JEE Main 2022
Complex Numbers and Quadratic Equations
Report Error
A
1000
B
1024
C
1105
D
1196
Solution:
z
0
=
(
3
0
+
3
+
0
,
3
0
+
6
+
0
)
=
(
1
,
2
)
v
0
=
∣1
+
2
i
∣
2
+
∣1
+
2
i
−
3
∣
2
+
∣1
+
2
i
−
6
i
∣
2
=
30
Then
∣
∣
2
z
0
2
−
z
ˉ
0
3
+
3
∣
∣
2
+
v
0
2
=
∣
∣
2
(
1
+
2
i
)
2
−
(
1
−
2
i
)
3
+
3
∣
∣
2
+
900
=
∣2
(
1
−
4
+
4
i
)
−
(
1
−
4
−
4
i
)
(
1
−
2
i
)
+
3
∣
2
+
900
=
∣8
+
6
i
∣
2
+
900
=
100
+
900
=
1000