Q.
Let the maximum and minimum value of the expression 2cos2θ+cosθ+1 is M and m respectively, then the value of [mM] is, (where [.] is the greatest integer function)
2(cos)2θ+cosθ+1=2((cos)2θ+2cosθ+21) 2{(cosθ+41)2+167}
Given expression is maximum when cosθ=1 and minimum when cosθ=−41 ⇒M=2((45)2+167)=2(1632)=4
and m=2(167)=87
Hence, [mM]=[732]=4