Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let the matrix A=[0 1 0 0 0 1 1 0 0] and the matrix B0=A49+2 A98. If Bn= textAdj(Bn-1) for all n ≥ 1, then textdet( B 4) is equal to :
Q. Let the matrix
A
=
⎣
⎡
0
0
1
1
0
0
0
1
0
⎦
⎤
and the matrix
B
0
=
A
49
+
2
A
98
. If
B
n
=
Adj
(
B
n
−
1
)
for all
n
≥
1
, then
det
(
B
4
)
is equal to :
630
131
JEE Main
JEE Main 2022
Determinants
Report Error
A
3
28
B
3
30
C
3
32
D
3
36
Solution:
A
2
=
⎣
⎡
0
0
1
1
0
0
0
1
0
⎦
⎤
⎣
⎡
0
0
1
1
0
0
0
1
0
⎦
⎤
=
⎣
⎡
0
1
0
0
0
1
1
0
0
⎦
⎤
a
↔
R
2
−
⎣
⎡
1
0
0
0
0
1
0
1
0
⎦
⎤
R
2
↔
R
3
⎣
⎡
1
0
0
0
1
0
0
0
1
⎦
⎤
=
I
B
0
=
A
49
+
2
A
98
=
A
+
2
I
B
n
=
Adj
(
B
n
−
1
)
B
4
=
Adj
(
Adj
(
Adj
(
Adj
0
)
)
=
∣
B
0
∣
(
n
−
1
)
4
=
∣
B
0
∣
16
B
0
=
⎣
⎡
0
0
1
1
0
0
0
1
0
⎦
⎤
+
⎣
⎡
2
0
0
0
2
0
0
0
2
⎦
⎤
=
⎣
⎡
2
0
1
1
2
0
0
1
2
⎦
⎤
=
2
(
4
−
0
)
−
1
(
0
−
1
)
=
9
B
4
(
9
)
16
=
(
3
)
32