Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let the line (x-2/3) = (y-1/-5) = (z+2/2) lie in the plane x + 3y-α z + β = 0. Then (α, β) equals
Q. Let the line
3
x
−
2
=
−
5
y
−
1
=
2
z
+
2
lie in the plane
x
+
3
y
−
α
z
+
β
=
0
. Then
(
α
,
β
)
equals
2456
222
VITEEE
VITEEE 2018
Report Error
A
(
−
6
,
7
)
B
(
5
,
−
15
)
C
(
−
5
,
5
)
D
(
6
,
−
17
)
Solution:
∵
The line
3
x
−
2
=
−
5
y
−
1
=
2
z
+
2
lie in the plane
x
+
3
y
−
α
z
+
β
=
0
∴
Pt
(
2
,
1
,
−
2
)
lies on the plane i.e.
2
+
3
+
2
α
+
β
=
0
or
2
α
+
β
+
5
=
0
....
(
i
)
Also normal to plane will be perpendicular to line,
∴
3
⋅
1
−
5
×
3
+
2
×
(
−
α
)
=
0
⇒
α
=
−
6
From equation
(
i
)
then,
β
=
7
∴
(
α
,
β
)
=
(
−
6
,
7
)