Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let the lengths of intercepts on x-axis and y-axis made by the circle x2+y2+a x+2 a y+c=0(a<0) be 2 √2 and 2 √5, respectively. Then the shortest distance from origin to a tangent to this circle which is perpendicular to the line x +2 y =0, is equal to :
Q. Let the lengths of intercepts on x-axis and y-axis made by the circle
x
2
+
y
2
+
a
x
+
2
a
y
+
c
=
0
(
a
<
0
)
be
2
2
and
2
5
, respectively. Then the shortest distance from origin to a tangent to this circle which is perpendicular to the line
x
+
2
y
=
0
, is equal to :
2246
198
JEE Main
JEE Main 2021
Conic Sections
Report Error
A
11
100%
B
7
0%
C
6
0%
D
10
0%
Solution:
x
2
+
y
2
+
a
x
+
2
a
y
+
c
=
0
2
g
2
−
c
=
2
4
a
2
−
c
=
2
2
⇒
4
a
2
−
c
=
2
…
(i)
2
f
2
−
c
=
2
a
2
−
c
=
2
2
f
2
−
c
=
2
a
2
−
c
=
2
5
⇒
a
2
−
c
=
5
…
(ii)
(
1
)
&
(
2
)
4
3
a
2
=
3
⇒
a
=
−
2
(
a
<
0
)
∴
c
=
−
1
Circle
⇒
x
2
+
y
2
−
2
x
−
4
y
−
1
=
0
⇒
(
x
−
1
)
2
+
(
y
−
2
)
2
=
6
Given
x
+
2
y
=
0
⇒
m
=
−
2
1
m
tangent
=
2
Equation of tangent
⇒
(
y
−
2
)
=
2
(
x
−
1
)
±
6
1
+
4
⇒
2
x
−
y
±
30
=
0
Perpendicular distance from
(
0
,
0
)
=
∣
∣
4
+
1
±
30
∣
∣
=
6