Q.
Let the incentre of ΔABC is I(2,5) . If A=(1,13) and B=(−4,1) , then the coordinates of C are
4906
179
NTA AbhyasNTA Abhyas 2020Straight Lines
Report Error
Solution:
Slope of AB is 1−(−4)13−1=512
Slope of BI is 2−(−4)5−1=32
Slope of AI is 1−(2)13−5=−8
Let, the slopes of BC and AC are m1 & m2 respectively ⇒1+m2(−8)m2−(−8)=1+(−8)(512)−8−(512) (m2+8)(91)=(1−8m2)(−57) 8×91−57=(8×57−91)m2⇒m2=−34
Now, 1+m1(32)m1−32=1+32×51232−512 ⇒(3m1−2)(39)=(3+2m1)(−26) ⇒9m1−6=−6−4m1⇒m1=0 ⇒ The equation of AC is (y−13)=−34(x−1) and the equation of BC is y=1 ⇒C is (10,1)