Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let the incentre of Δ ABC is Ι(2,5) . If A=(1,13) and B=(- 4,1) , then the coordinates of C are
Question Error Report
Question is incomplete/wrong
Question not belongs to this Chapter
Answer is wrong
Solution is wrong
Answer & Solution is not matching
Spelling mistake
Image missing
Website not working properly
Other (not listed above)
Error description
Thank you for reporting, we will resolve it shortly
Back to Question
Thank you for reporting, we will resolve it shortly
Q. Let the incentre of $\Delta ABC$ is $Ι\left(2,5\right)$ . If $A=\left(1,13\right)$ and $B=\left(- 4,1\right)$ , then the coordinates of $C$ are
NTA Abhyas
NTA Abhyas 2020
Straight Lines
A
$\left(1,10\right)$
B
$\left(10,1\right)$
C
$\left(8,2\right)$
D
$\left(9,3\right)$
Solution:
Slope of $AB$ is $\frac{13 - 1}{1 - \left(- 4\right)}=\frac{12}{5}$
Slope of $BI$ is $\frac{5 - 1}{2 - \left(- 4\right)}=\frac{2}{3}$
Slope of $AI$ is $\frac{13 - 5}{1 - \left(2\right)}=-8$
Let, the slopes of $BC$ and $AC$ are $m_{1}$ & $m_{2}$ respectively
$\Rightarrow \frac{m_{2} - \left(- 8\right)}{1 + m_{2} \left(- 8\right)}=\frac{- 8 - \left(\frac{12}{5}\right)}{1 + \left(- 8\right) \left(\frac{12}{5}\right)}$
$\left(m_{2} + 8\right)\left(91\right)=\left(1 - 8 m_{2}\right)\left(- 57\right)$
$8\times 91-57=\left(8 \times 57 - 91\right)m_{2}\Rightarrow m_{2}=-\frac{4}{3}$
Now, $\frac{m_{1} - \frac{2}{3}}{1 + m_{1} \left(\frac{2}{3}\right)}=\frac{\frac{2}{3} - \frac{12}{5}}{1 + \frac{2}{3} \times \frac{12}{5}}$
$\Rightarrow \left(3 m_{1} - 2\right)\left(39\right)=\left(3 + 2 m_{1}\right)\left(- 26\right)$
$\Rightarrow 9m_{1}-6=-6-4m_{1}\Rightarrow m_{1}=0$
$\Rightarrow $ The equation of $AC$ is $\left(y - 13\right)=-\frac{4}{3}\left(x - 1\right)$ and the equation of $BC$ is $y=1$
$\Rightarrow C$ is $\left(10,1\right)$