Q.
Let the homogeneous system of linear equations px+y+z=0,x+qy+z=0, and x+y+rz=0, where p,q,r=1, have a non-zero solution, then the value of 1−p1+1−q1+1−r1 is
Given equations are
px+y+z=0,x+qy+z=0,x+y+rz=0
Since the system have a non-zero solution, then ∣∣p111q111r∣∣ =0
Applying C2→C2−C1
and C3→C3−C2 ⇒∣∣p111−pq−1101−qr−1∣∣ =0 ⇒(1−P)(1−q)(1−r)∣∣1−pp1−q11−r11−1001−1∣∣ =0 ⇒(1−p)(1−q)(1−r)<br/>[1−pp(1)−1(−1−q1−1−r1)]=0
Since, p,q,r= 1 =1−pp+1−q1+1−r1=0 ⇒1−p1−1+1−q1+1−r1=0 ⇒1−p1+1−q1+1−r1=1