Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let the function g: (-∞, ∞) → ( - (π/2) , (π/2)) be given by g(u) = 2 tan-1 (eu) - (π/2). then , g is
Q. Let the function
g
:
(
−
∞
,
∞
)
→
(
−
2
π
,
2
π
)
be given by
g
(
u
)
=
2
tan
−
1
(
e
u
)
−
2
π
. then , g is
2469
211
JEE Advanced
JEE Advanced 2008
Application of Derivatives
Report Error
A
even and is strictly increasing in
(
0
,
∞
)
8%
B
odd and is strictly decreasing in
(
−
∞
,
∞
)
50%
C
odd and is strictly increasing in
(
−
∞
,
∞
)
25%
D
neither even nor odd, but is strictly increasing in
(
−
∞
,
∞
)
17%
Solution:
Given that
g
(
u
)
=
2
tan
−
1
(
e
u
)
−
2
π
∴
g
(
−
u
)
=
2
tan
−
1
(
e
−
u
)
−
2
π
=
2
tan
−
1
(
e
u
1
)
−
2
π
=
2
cot
−
1
(
e
u
)
−
2
π
=
2
[
2
π
−
tan
−
1
(
e
u
)
]
−
2
π
=
π
−
2
tan
−
1
(
e
u
)
−
2
π
=
2
π
−
2
tan
−
1
(
e
u
)
=
−
g
(
u
)
∴
g
is an odd function .
Also
g
′
(
u
)
=
1
+
e
2
u
2
e
u
>
0
,
∀
u
∈
(
−
∞
,
∞
)
∴
g is strictly increasing on
(
−
∞
,
∞
)