Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let the function f(x) =x2 +x + sin x- cos x + log(1 + | x |). be defined over the interval [0, 1]. The odd extension of f(x) to the interval [- 1, 1] is
Q. Let the function
f
(
x
)
=
x
2
+
x
+
sin
x
−
cos
x
+
lo
g
(
1
+
∣
x
∣
)
.
be defined over the interval [0, 1]. The odd extension of
f
(
x
)
to the interval [- 1, 1] is
1973
242
Relations and Functions
Report Error
A
x
2
+
x
+
sin
x
+
cos
x
−
l
o
g
(
1
+
∣
x
∣
)
27%
B
−
x
2
+
x
+
sin
x
+
cos
x
+
l
o
g
(
1
+
∣
x
∣
)
41%
C
−
x
2
+
x
+
sin
x
−
cos
x
+
l
o
g
(
1
+
∣
x
∣
)
15%
D
none of these
16%
Solution:
Let the function in (a), (b), (c) be denoted by
f
a
,
f
b
,
f
c
Then
f
a
(
−
x
)
=
−
f
(
x
)
;
f
b
(
−
x
)
=
−
f
(
x
)
;
f
c
(
−
x
)
=
−
f
(
x
)
∴
f
b
is odd in
(
−
1
,
0
)
Hence
f
b
is odd extension of
f
(
x
)
in
[
−
1
,
1
]
.