f(x)=∣x+1∣⇒f(x−3)=∣x−2∣ f(x−1)=∣x∣ , f(x+1)=∣x+2∣
Given f(x−3),f(x−1),f(x+1) are in A.P. ⇒2∣x∣=∣x−2∣+∣x+2∣
Case 1 : x<−2 −x+2−x−2=−2x⇒0=0 ⇒x<−2
Case 2 : −2≤x<0 −x+2+x+2=−2x⇒x=−2 ⇒x=−2
Case 3 : 0≤x<2 −x+2+x+2=2x⇒x=2⇒ no solution
Case 4 : x≥2 x−2+x+2=2x⇒0=0 ⇒x≥2
Taking union, we get x≤−2 or x≥2
But. x∈[−2,2]
Taking intersection, we get, x=−2 and 2