Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let the function f(x)=( operatornamearccot (x/2)+ operatornamearccot (x/3)/ arctan (x)2+ arctan (x)3, then f(1) is equal to
Q. Let the function
f
(
x
)
=
a
r
c
t
a
n
2
x
+
a
r
c
t
a
n
3
x
arccot
2
x
+
arccot
3
x
, then
f
(
1
)
is equal to
214
129
Inverse Trigonometric Functions
Report Error
A
1
B
2
C
3
D
4
Solution:
We have,
f
(
1
)
=
t
a
n
−
1
2
1
+
t
a
n
−
1
3
1
c
o
t
−
1
2
1
+
c
o
t
−
1
3
1
=
t
a
n
−
1
2
1
+
t
a
n
−
1
3
1
t
a
n
−
1
2
+
t
a
n
−
1
3
=
4
π
4
3
π
=
3