Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let the function f:[0,1] arrow R be defined by f(x)=(4x/4x+2) Then the value of f((1/40))+f((2/40))+f((3/40))+ ldots+f((39/40))-f((1/2)) is
Q. Let the function
f
:
[
0
,
1
]
→
R
be defined by
f
(
x
)
=
4
x
+
2
4
x
Then the value of
f
(
40
1
)
+
f
(
40
2
)
+
f
(
40
3
)
+
…
+
f
(
40
39
)
−
f
(
2
1
)
is ____
1737
189
JEE Advanced
JEE Advanced 2020
Report Error
Answer:
19.00
Solution:
r
=
1
∑
39
f
(
40
r
)
=
2
1
r
=
1
∑
39
f
(
40
r
)
+
f
(
40
40
−
r
)
=
2
39
As
(
f
(
x
)
+
f
(
1
−
x
)
=
1
)
&
f
(
2
1
)
=
2
1
So
r
=
1
∑
39
f
(
40
r
)
−
f
(
2
1
)
=
2
39
−
2
1
=
19