Q.
Let the equations of two sides of a triangle be 3x−2y+6=0 and 4x+5y−20=0. If the orthocentre of this triangle is at (1,1) and the equation of its third side is ax+by+c=0, then a+b−c is
Since, AH is perpendicular to BC
Hence, mAH.mBC=−1 (x2−1520−4x2−1)×23=−1 5(x2−1)15−4x2=−32 45−12x2=−10x2+10 2x2=35⇒x2=235 ⇒A(235,−10)
Since, BH is perpendicular to CA.
Hence, mBH×mCA=−1 (x1−123x1+3−1)(−54)=−1 2(x1−1)(3x1+4)×4=5 ⇒6x1+8=5x1−5 ⇒x1=−13 ⇒(−13,2−33) ⇒ Equation of line AB is y+10=(−13−352−33+10)(x−235) ⇒−16y−610=−13x+2455 ⇒−122y−1220=−26x+455 ⇒26x−122y−1675=0
Equation of third sideis 26x−122y−1675=0 ⇒ax+by+c=26x−122y−1675 a=26,b=−122,c=−1675 ∴a+b−c=26+(−122)−(−1675) =1579