Q.
Let the equations of two ellipses be E1:3x2+2y2=1andE2:16x2+b2y2=1, If the product of their eccentricities is 21, then the length of the minor axis of ellipse E2 is:
Given equations of ellipses E1:3x2+2y2=1 ⇒e1=1−32=31 E2:61x2+b2y2=1 ⇒e2=161−b2=416−b2
Also, given e1×e2=21 ⇒31×416−b2=21⇒16−b2=12 ⇒b2=4 ∴ Length of minor axis of E2=2b=2×2=4