Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let the equation of two diameters of a circle x2+y2-2 x+2 f y+1=0 be 2 p x-y=1 and 2 x+p y=4 p. Then the slope m ∈(0, ∞) of the tangent to the hyperbola 3 x2-y2=3 passing through the centre of the circle is equal to
Q. Let the equation of two diameters of a circle
x
2
+
y
2
−
2
x
+
2
f
y
+
1
=
0
be
2
p
x
−
y
=
1
and
2
x
+
p
y
=
4
p
. Then the slope
m
∈
(
0
,
∞
)
of the tangent to the hyperbola
3
x
2
−
y
2
=
3
passing through the centre of the circle is equal to _____
241
117
JEE Main
JEE Main 2022
Conic Sections
Report Error
Answer:
2
Solution:
2
p
+
f
−
1
=
0.....
(1)
2
−
p
f
−
4
p
=
0.....
(2)
2
=
p
(
f
+
4
)
p
=
f
+
4
2
2
p
=
1
−
f
f
+
4
4
=
1
−
f
f
2
+
3
f
=
0
f
=
0
or
−
3
Hyperbola
3
x
2
−
y
2
=
3
,
x
2
−
3
y
2
=
1
y
=
m
x
±
m
2
−
3
It passes
(
1
,
0
)
o
=
m
±
m
2
−
3
m
tends
∞
It passes
(
1
,
3
)
3
=
m
±
m
2
−
3
(
3
−
m
)
2
=
m
2
−
3
m
=
2