Q.
Let the eccentricity of the hyperbola a2x2−b2y2=1 be 45. If the equation of the normal at the point (58,512) on the hyperbola is 85x+βy=λ, then λ−β is equal to
e2=1+a2b2=1625 ⇒a2b2=169 ...(1) A(58,512) satisfies a2x2−b2y2=1 ⇒5a264−25b2144=1 ...(2)
Solving (1) & (2) b=56a=58
Normal at A is 85a2x+125b2y=a2+b2
Comparing it 85x+βy=λ
Gives λ=100,β=15 λ−β=85