Q.
Let the area enclosed by the x-axis, and the tangent and normal drawn to the curve 4x3−3xy2+6x2−5xy−8y2+9x+14=0 at the point (−2,3) be A. Then 8A is equal to ______
4x3−3xy2+6x2−5xy−8y2+9x+14=0 at P(−2,3) 12x2−3(y2+2yxy′)+12x−5(xy′+y)−16yy′+9=0 48−3(9−12y′)−24−5(−2y′+3)−48y′+9=0 y′=−9/2
Tangent y−3=−29(x+2)⇒9x+2y=−12
Normal :y−3=92(x+2)⇒9y−2x=31