Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let [t] denote the greatest integer less than or equal to t. Then the value of ∫ limits12|2 x-[3 x]| d x is
Q. Let [t] denote the greatest integer less than or equal to
t
. Then the value of
1
∫
2
∣2
x
−
[
3
x
]
∣
d
x
is___
2924
227
JEE Main
JEE Main 2020
Integrals
Report Error
Answer:
1.0
Solution:
3
<
3
x
<
6
Take cases when
3
<
3
x
<
4
,
4
<
3
x
<
5
5
<
3
x
<
6
Now
1
∫
2
∣2
x
−
[
3
x
]
∣
d
x
=
1
∫
4/3
(
3
−
2
x
)
d
x
+
4/3
∫
5/3
(
4
−
2
x
)
d
x
+
5/3
∫
2
(
5
−
2
x
)
d
x
=
9
2
+
9
3
+
9
4
=
1