Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let [t] denote the greatest integer less than or equal to t. Then, the value of the integral ∫ limits01[-8 x2+6 x-1] d x is equal to
Q. Let [t] denote the greatest integer less than or equal to
t
. Then, the value of the integral
0
∫
1
[
−
8
x
2
+
6
x
−
1
]
d
x
is equal to
1118
149
JEE Main
JEE Main 2022
Integrals
Report Error
A
−
1
25%
B
−
4
5
4%
C
8
17
−
13
58%
D
8
17
−
16
14%
Solution:
0
∫
1
[
−
8
x
2
+
6
x
−
1
]
d
x
=
0
∫
1/4
−
1
d
x
+
1/4
∫
1/2
0
d
x
+
1/2
∫
3/4
−
1
d
x
+
3/4
∫
8
3
+
17
−
2
d
x
+
8
3
+
17
∫
1
−
3
d
x
=
−
[
x
]
0
1/4
+
0
−
[
x
]
1/2
3/4
+
−
2
[
x
]
3/4
8
3
+
17
−
3
[
x
]
8
3
+
17
1
=
−
(
4
1
−
0
)
−
(
4
3
−
2
1
)
−
2
(
8
3
+
17
−
4
3
)
−
3
(
1
−
8
3
+
17
)
=
−
4
1
−
4
1
+
8
−
6
−
2
17
+
2
3
−
3
+
8
9
+
3
17
=
8
17
−
13