Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let [t] denote the greatest integer less than or equal to t. Then the value of the integral ∫ limits-3101([ sin (π x)]+e[ cos (2 π x)]) d x is equal to
Q. Let
[
t
]
denote the greatest integer less than or equal to t. Then the value of the integral
−
3
∫
101
(
[
sin
(
π
x
)]
+
e
[
c
o
s
(
2
π
x
)]
)
d
x
is equal to
1100
127
JEE Main
JEE Main 2022
Integrals
Report Error
A
e
52
(
1
−
e
)
B
e
52
C
e
52
(
2
+
e
)
D
e
104
Solution:
−
3
∫
101
(
[
sin
π
x
]
+
e
[
c
o
s
2
π
x
]
)
d
x
52
0
∫
2
(
[
sin
π
x
]
+
e
[
c
o
s
2
π
x
]
)
d
t
π
52
0
∫
2
π
(
[
sin
t
]
+
e
[
c
o
s
2
t
]
)
d
t
π
52
0
∫
2
π
(
[
sin
t
]
d
t
+
0
∫
2
π
e
[
c
o
s
2
t
]
d
t
)
I
1
=
0
∫
2
π
[
sin
t
]
d
t
Using King
I
1
=
0
∫
2
π
[
−
sin
t
]
d
t
2
I
1
=
0
∫
2
π
(
−
1
)
d
t
=
−
2
π
I
1
=
−
π
I
2
=
2
0
∫
π
e
[
c
o
s
2
t
]
d
t
=
2.2
0
∫
π
/2
e
[
c
o
s
2
t
]
d
t
=
4
(
0
∫
π
/4
e
0
⋅
d
t
+
π
/4
∫
π
/2
e
−
1
d
t
)
4
(
4
π
+
e
−
1
(
4
π
)
)
=
π
(
1
+
e
−
1
)
I
=
π
52
(
−
π
+
π
+
π
e
−
1
)
=
e
52