Q.
Let sinx and siny be roots of the quadratic equation sin2θ+bsinθ+c=0(a,b,c∈R and a=0) such that sinx+2siny=1, then the value of (a2+2b2+3ab+ac) equals
168
111
Complex Numbers and Quadratic Equations
Report Error
Solution:
Given (sinx+siny)=a−b ....(1)
and sinx⋅siny=ac ....(2)
also sinx+2siny=1 ....(3)
From (1) and (3) ⇒siny=1+ab=aa+b ⇒sinx=a−b−a(a+b)=a−a−2b
So, put in (2), we get a−(a+2b)⋅a(a+b)=ac
Hence, ac+(a+2b)(a+b)=0⇒a2+2b2+3ab+ac=0