Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let S= z mid z barz-(3-4 i) z-(3+4 i) barz+21=0 . If M and m be the maximum and minimum value of ((z- barz/i(z+ barz))) then find ((1/M)+(1/m))
Q. Let
S
=
{
z
∣
z
z
ˉ
−
(
3
−
4
i
)
z
−
(
3
+
4
i
)
z
ˉ
+
21
=
0
}
. If
M
and
m
be the maximum and minimum value of
(
i
(
z
+
z
ˉ
)
z
−
z
ˉ
)
then find
(
M
1
+
m
1
)
94
147
Vector Algebra
Report Error
Answer:
2
Solution:
z
∣
z
z
ˉ
−
(
3
−
4
i
)
z
−
(
3
+
4
i
)
z
ˉ
+
21
=
0
z
z
+
a
z
+
a
z
+
b
=
0
(
Centre
(
−
a
)
,
r
=
∣
a
∣
2
−
b
)
Radius
9
+
16
−
21
=
4
=
2
Centre
→
(
3
,
4
)
Circle
(
x
−
3
)
2
+
(
y
−
4
)
2
=
4
i
(
z
+
z
)
z
−
z
⇒
i
(
2
x
)
2
×
2
i
y
⇒
(
x
y
)
Equation of tangent
(
y
−
4
)
=
m
(
x
−
3
)
±
2
1
+
m
2
Satisfies
(
0
,
0
)
3
m
−
4
=
±
2
1
+
m
2
⇒
9
m
2
+
16
−
24
m
=
2
(
1
+
m
2
)
⇒
5
m
2
−
24
m
+
12
=
0
M
1
+
m
1
=
(
M
m
M
+
m
)
⇒
5
24
×
12
5
=
2