Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let S = x ∈ R: x ≥ 0 and 2 | √x - 3 | + √x ( √x - 6 ) + 6 = 0 . Then S :
Q. Let
S
=
{
x
∈
R
:
x
≥
0
and
2∣
x
−
3∣
+
x
(
x
−
6
)
+
6
=
0
}
. Then
S
:
3814
222
JEE Main
JEE Main 2018
Sets
Report Error
A
is an empty set
28%
B
contains exactly one element
24%
C
contains exactly two elements
37%
D
contains exactly four elements
11%
Solution:
2∣
x
−
3∣
+
x
(
x
−
6
)
+
6
=
0
2∣
x
−
3∣
+
(
x
−
3
+
3
)
(
x
−
3
−
3
)
+
6
=
0
2∣
x
−
3∣
+
(
x
−
3
)
2
−
3
=
0
(
x
−
3
)
2
+
2∣
x
−
3∣
−
3
=
0
(
∣
x
−
3∣
+
3
)
(
∣
x
−
3∣
−
1
)
=
0
⇒
∣
x
−
3∣
=
1
,
∣
x
−
3∣
+
3
=
0
⇒
x
−
3
=
±
1
⇒
x
=
4
,
2
x
=
16
,
4