Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let S= θ ∈[-π, π]- ± (π/2): sin θ tan θ+ tan θ= sin 2 θ . If T = displaystyle∑θ ∈ S cos 2 θ, then T + n ( S ) is equal
Q. Let
S
=
{
θ
∈
[
−
π
,
π
]
−
{
±
2
π
}
:
sin
θ
tan
θ
+
tan
θ
=
sin
2
θ
}
.
If
T
=
θ
∈
S
∑
cos
2
θ
, then
T
+
n
(
S
)
is equal
875
158
JEE Main
JEE Main 2022
Trigonometric Functions
Report Error
A
7
+
3
11%
B
9
67%
C
8
+
3
13%
D
10
9%
Solution:
sin
θ
tan
θ
+
tan
θ
=
sin
2
θ
tan
θ
(
sin
θ
+
1
)
=
1
+
t
a
n
2
θ
2
t
a
n
θ
tan
θ
=
0
⇒
θ
=
−
π
,
0
,
π
(
sin
θ
+
1
)
=
2
⋅
cos
2
θ
=
2
(
1
+
sin
θ
)
(
1
−
sin
θ
)
sin
θ
=
−
1
which is not possible
sin
θ
=
2
1
θ
=
6
π
,
6
5
π
n
(
s
)
=
5
T
=
cos
0
+
cos
2
π
+
cos
2
π
+
cos
3
π
+
cos
3
5
π
T
=
4
T
=
n
(
s
)
=
9