Let α=θ+(m−1)6π &β=θ+m6π
So, β−α=6π
Here, m=1∑9secα⋅secβ=m=1∑9cosα⋅cosβ1 =2m=1∑9cosα⋅cosβsin(β−α)=2m=1∑9(tanβ−tanα) =2m=1∑9(tan(θ+m6π)−tan(θ+(m−1)6π)) =2(tan(θ+69π)−tanθ)=2(−cotθ−tanθ)=−38
(Given) ∴tanθ+cotθ=34 ⇒tanθ=31 or 3
So, S={6π,3π} θ∈S∑θ=6π+3π=2π