Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let Sn(x)= log a 1 / 2 x+ log a1 / 3 x+ log a1 / 6 x + log a1 / 11 x+ log a1 / 18 x+ log a1 / 27 x+ ldots . up to n-terms, where a >1. If S 24( x )=1093 and S 12(2 x )=265, then value of a is equal to .
Q. Let
S
n
(
x
)
=
lo
g
a
1/2
x
+
lo
g
a
1/3
x
+
lo
g
a
1/6
x
+
lo
g
a
1/11
x
+
lo
g
a
1/18
x
+
lo
g
a
1/27
x
+
…
.
up to n-terms, where
a
>
1
. If
S
24
(
x
)
=
1093
and
S
12
(
2
x
)
=
265
, then value of a is equal to _______.
2092
218
JEE Main
JEE Main 2021
Sequences and Series
Report Error
Answer:
16
Solution:
S
n
(
x
)
=
(
2
+
3
+
6
+
11
+
18
+
27
+
……
+
n
-terms
)
lo
g
a
x
Let
S
1
=
2
+
3
+
6
+
11
+
18
+
27
+
…
+
T
n
S
1
=
2
+
3
+
6
+
……………
.
+
T
n
T
n
=
2
+
1
+
3
+
5
+
………
+
n
terms
T
n
=
2
+
(
n
−
1
)
2
S
1
=
Σ
T
n
=
2
n
+
6
(
n
−
1
)
n
(
2
n
−
1
)
⇒
S
n
(
x
)
=
(
2
n
+
6
n
(
n
−
1
)
(
2
n
−
1
)
)
lo
g
a
x
S
24
(
x
)
=
1093
(Given)
lo
g
a
x
(
48
+
6
23.24.47
)
=
1093
lo
g
a
x
=
4
1
…
.
(
1
)
S
12
(
2
x
)
=
265
S
12
(
2
x
)
=
265
lo
g
a
(
2
x
)
(
24
+
6
11.12.23
)
=
265
lo
g
a
2
x
=
2
1
…
.
(
2
)
(
2
)
−
(
1
)
lo
g
a
2
x
−
lo
g
a
x
=
4
1
lo
g
a
2
=
4
1
⇒
a
=
16