Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let Sn= displaystyle ∑k=0n (n/n2+kn+k2) and Tn= displaystyle ∑k=0n-1 (1/n2+kn+k2) , for n = 1 ,2 ,3 ,... Then,
Q. Let
S
n
=
k
=
0
∑
n
n
2
+
kn
+
k
2
n
and
T
n
=
k
=
0
∑
n
−
1
n
2
+
kn
+
k
2
1
,
f
or
n
=
1
,
2
,
3
,... Then,
2873
195
IIT JEE
IIT JEE 2008
Integrals
Report Error
A
S
n
<
3
3
π
38%
B
S
n
>
3
3
π
23%
C
T
n
<
3
3
π
12%
D
T
n
>
3
3
π
27%
Solution:
Given,
S
n
=
k
=
0
∑
n
n
2
+
kn
+
k
2
n
=
k
=
0
∑
n
n
1
⋅
(
1
+
n
k
+
n
2
k
2
1
)
<
n
→
∞
lim
k
=
0
∑
n
n
1
(
1
+
n
k
+
(
n
k
)
2
1
)
=
0
∫
1
1
+
x
+
x
2
1
d
x
=
[
3
2
tan
−
1
(
3
2
(
x
+
2
1
)
)
]
0
1
=
3
2
⋅
(
3
π
−
6
π
)
=
3
3
π
i.e.
S
n
<
3
3
π
Similarly,
T
n
>
3
3
π