Q.
Let Sn denotes the sum of the cubes of the first n natural numbers and sn denotes the sum of first n natural numbers. Then, ∑r=1nsrSr equals to
r=1∑nSrSr=r=1∑n2r(r+1)4r2(r+1)2 {Σn3=[2n(n+1)]2 and sum of the first n natural numbers, Σn=2n(n+1)} =r=1∑n2r(r+1)=21r=1∑n(r2+r) =21[r=1∑nr2+r=1∑nr] =21[6n(n+1)(2n+1)+2n(n+1)] =121(n)(n+1)(2n+1+3) =12n(n+1)2(n+2)=6n(n+1)(n+2)