S(1)+S(2)+S(3)+…+S(99)= Sum of digits of counting numbers 1 to 99 .
We know that, in 1 to 99 , there is 20 times 1,20 times 2, 20 times 3,…,20 times 9 and 9 times zero.
So, S(1)+S(2)+S(3)+…+S(99) =20×1+20×2+20×3+…+20×9+9×0 =20[1+2+3+…+9] =220×9×(9+1)[∵∑n=1nn=2n(n+1)] =220×9×10=9×10×10=900