Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let Sn= cot -1(3 x+(2/x))+ cot -1(6 x+(2/x))+ cot -1(10 x+(2/x))+ ldots ldots ldots ldots+n terms, where x>0. If undersetn arrow ∞ textLim Sn=1, then x equals
Q. Let
S
n
=
cot
−
1
(
3
x
+
x
2
)
+
cot
−
1
(
6
x
+
x
2
)
+
cot
−
1
(
10
x
+
x
2
)
+
…………
+
n
terms, where
x
>
0
. If
n
→
∞
Lim
S
n
=
1
, then
x
equals
229
147
Inverse Trigonometric Functions
Report Error
A
4
π
B
1
C
tan
1
D
cot
1
Solution:
As,
T
n
=
cot
−
1
[
2
(
n
+
1
)
(
n
+
2
)
x
+
x
2
]
⇒
T
n
=
tan
−
1
(
(
n
+
2
)
(
n
+
1
)
x
2
+
4
2
x
)
∴
T
n
=
tan
−
1
(
(
2
n
+
2
)
x
)
−
tan
−
1
(
(
2
n
+
1
)
x
)
So,
S
n
=
tan
−
1
(
(
2
n
+
2
)
x
)
−
tan
−
1
x
⇒
n
→
∞
Lim
S
n
=
2
π
−
tan
−
1
x
=
cot
−
1
x
=
1
(Given
)
⇒
x
=
cot
1
.