Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Let $S_n=\cot ^{-1}\left(3 x+\frac{2}{x}\right)+\cot ^{-1}\left(6 x+\frac{2}{x}\right)+\cot ^{-1}\left(10 x+\frac{2}{x}\right)+\ldots \ldots \ldots \ldots+n$ terms, where $x>0$. If $\underset{n \rightarrow \infty} {\text{Lim}} S_n=1$, then $x$ equals

Inverse Trigonometric Functions

Solution:

As, $T_n=\cot ^{-1}\left[\frac{(n+1)(n+2)}{2} x+\frac{2}{x}\right] \Rightarrow T_n=\tan ^{-1}\left(\frac{2 x}{(n+2)(n+1) x^2+4}\right)$
$\therefore T_n=\tan ^{-1}\left(\left(\frac{n+2}{2}\right) x\right)-\tan ^{-1}\left(\left(\frac{n+1}{2}\right) x\right)$
So, $ S_n=\tan ^{-1}\left(\left(\frac{n+2}{2}\right) x\right)-\tan ^{-1} x$
$\Rightarrow \underset {n \rightarrow \infty}{\text{Lim}} S_n=\frac{\pi}{2}-\tan ^{-1} x=\cot ^{-1} x=1$ (Given $) \Rightarrow x=\cot 1$.