Q. Let $S_n=\cot ^{-1}\left(3 x+\frac{2}{x}\right)+\cot ^{-1}\left(6 x+\frac{2}{x}\right)+\cot ^{-1}\left(10 x+\frac{2}{x}\right)+\ldots \ldots \ldots \ldots+n$ terms, where $x>0$. If $\underset{n \rightarrow \infty} {\text{Lim}} S_n=1$, then $x$ equals
Inverse Trigonometric Functions
Solution: