Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let Sn = (1/13) + (1+2/13 + 23) + (1+2+3/13 + 23 + 33) + ...... + (1+2+...+n/13 + 23 +.... +n3) . . If 100 Sn = n , then n is equal to :
Q. Let
S
n
=
1
3
1
+
1
3
+
2
3
1
+
2
+
1
3
+
2
3
+
3
3
1
+
2
+
3
+
......
+
1
3
+
2
3
+
....
+
n
3
1
+
2
+
...
+
n
.
. If
100
S
n
=
n
,
then
n
is equal to :
3339
208
JEE Main
JEE Main 2017
Sequences and Series
Report Error
A
199
50%
B
99
24%
C
200
16%
D
19
10%
Solution:
T
n
=
(
2
n
+
(
n
+
1
)
)
2
2
n
+
(
n
+
1
)
T
n
=
n
(
n
+
1
)
2
S
n
=
2
n
=
1
∑
n
(
n
1
−
n
+
1
1
)
=
2
{
1
−
2
1
2
1
−
3
1
=
2
{
1
−
n
+
1
1
}
S
n
=
n
+
1
2
n
100
×
n
+
1
2
n
=
n
n
+
1
=
200
n
=
199