Q.
Let Sk, where k=1,2,,...,100, denotes the sum of the infinte geometric series whose first term is k!k−1 and the common ratio is k1. Then, the value of 100!1002+k=1∑100∣(k2−3k+1)Sk∣ is ......
1910
183
IIT JEEIIT JEE 2010Sequences and Series
Report Error
Answer: 4
Solution:
We have, Sk=1−k1kk−1=(k−1)!1
Now, (k2−3k+1)Sk={(k−2)(k−1)−1}×(k−1)!1 =(k−3)!1−(k−1)!1 ⇒k=1∑100∣(k2−3k+1)Sk∣=1+1+2−(99!1+98!1)=4−100!1002 ⇒100!1002+k=1∑100∣(k2−3k+1)Sk∣=4