Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
Let S denote the sum of the infinite series 1+(8/2!)+(21/3!)+(40/4!)+(65/5!) ....... . Then
Q. Let
S
denote the sum of the infinite series
1
+
2
!
8
+
3
!
21
+
4
!
40
+
5
!
65
.......
. Then
2655
228
WBJEE
WBJEE 2014
Sequences and Series
Report Error
A
S
<
8
100%
B
S
>
12
0%
C
8
<
S
<
12
0%
D
S
=
8
0%
Solution:
Let
S
=
1
+
2
!
8
+
3
!
21
+
4
!
40
+
5
!
65
+
…
Again, let
S
1
=
1
+
8
+
21
+
40
+
65
+
…
+
T
n
and
0
=
1
+
7
+
13
+
19
+
25
+
…
−
T
n
S
1
=
+
1
+
8
+
21
+
40
+
…
+
T
n
T
n
=
1
+
7
+
13
+
19
+
25
+
…
+
n
terms
=
2
n
[
2
(
1
)
+
(
n
−
1
)
6
]
=
n
[
1
+
3
(
n
−
1
)]
=
n
(
3
n
−
2
)
∴
S
=
∑
n
!
n
(
3
n
−
2
)
=
∑
(
n
−
1
)!
3
n
−
2
=
∑
(
n
−
1
)!
3
n
−
3
+
1
S
=
∑
(
n
−
2
)!
3
+
∑
(
n
−
1
)!
1
=
3
e
+
e
[
∵
e
=
1
+
1
!
1
+
2
!
1
+
…
]
=
4
e
We know
2
<
e
<
3
∴
8
<
4
e
<
12
⇒
8
<
S
<
12